Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Interactions among humans, livestock, and wildlife within disturbed ecosystems, such as those impacted by climate change, can facilitate pathogen spillover transmission and increase disease emergence risks. The study of future climate change impacts on the distribution of free-ranging bats is therefore relevant for forecasting potential disease burden. This study used current and future climate data and historic occurrence locations of the vampire bat speciesDesmodus rotundus, a reservoir of the rabies virus to assess the potential impacts of climate change on disease reservoir distribution. Analyses included a comprehensive comparison of different climate change periods, carbon emission scenarios, and global circulation models (GCMs) on final model outputs. Models revealed that, although climatic scenarios and GCMs used have a significant influence on model outputs, there was a consistent signal of range expansion across the future climates analyzed. Areas suitable forD. rotundusrange expansion include the southern United States and south-central portions of Argentina and Chile. Certain areas in the Amazon Rainforest, which currently rests at the geographic center ofD. rotundus’ range, may become climatically unsuitable for this species within the context of niche conservatism. While the impacts of rabies virus transmitted byD. rotunduson livestock are well known, an expansion ofD. rotundusinto novel areas may impact new mammalian species and livestock with unexpected consequences. Some areas in the Americas may benefit from an assessment of their preparedness to deal with an expectedD. rotundusrange expansion.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Abstract BackgroundTrypanosomaare protozoa parasites that infect animals and can cause economic losses in cattle production.Trypanosomalive in the blood and are transmitted by hematophagous insects, such as flies in the genusTabanus.Using ecological niche models, we explored the current geography of six commonTabanusspecies in Brazil, which are considered vectors ofTrypanosoma vivaxandTr. evansiin the Neotropics. MethodsWe used georeferenced data and biotic and abiotic variables integrated using a fundamental ecological niche modeling approach. Modeling results from sixTabanusspecies were used to identify risk areas ofTrypanosomatransmission in Latin America accounting for area predicted, landscape conditions, and density of livestock. We performed Jaccard, Schoener, and Hellinger metrics to indicate the ecological niche similarities of pairs ofTabanusspecies to identify known and likely vectors overlapping in distribution across geographies. ResultsOur results revealed significant ecological niche similarities for twoTabanusspecies (T. pungensandT. sorbillans), whereasT. triangulumandT. importunushave low ecological similarity. Ecological niche models predicted risk ofTrypanosomatransmission across Neotropical countries, with the highest risk in southern South America, Venezuela, and central Mexico. ConclusionsMore than 1.6 billion cattle and 38 million horses are under a threat category for infection risk. Furthermore, we identified specific areas and livestock populations at high risk of trypanosomiasis in Latin America. This study reveals the areas, landscapes, and populations at risk ofTrypanosomainfections in livestock in the Americas. Graphical Abstractmore » « lessFree, publicly-accessible full text available December 1, 2026
-
Ruiz-Saenz, Julian (Ed.)Rabies is a zoonotic infectious disease of global distribution that impacts human and animal health. In rural Latin America, rabies negatively impacts food security and the economy due to losses in livestock production. The common vampire bat,Desmodus rotundus, is the main reservoir and transmitter of rabies virus (RABV) to domestic animals in Latin America.Desmodus rotundusRABV is known to impact the cattle industry, from small farmers to large corporations. We assessed the main patterns of rabies in cattle attributed toD.rotundusRABV across Latin America. Epidemiological data on rabies from Latin America were collected from the Pan American Health Organization spanning the 1970–2023 period. Analyses revealed an average of 450 outbreaks annually for the countries whereD.rotundusis distributed, with at least 6 animals dying in each outbreak. Brazil, Colombia, Peru, and Mexico were the Latin American countries with the highest number of rabies outbreaks during the study period and are the most affected countries in recent years. Findings suggest a re-emergence of bat-borne rabies in the region with more outbreaks reported in recent years, especially during the 2003–2020 period. Rabies outbreaks in cattle in the 2000–2020 period were significantly more frequent than in previous decades, with an increase in cross-species transmission after 2002. The size of outbreaks, however, was smaller in recent years, involving lower cattle mortality. Peru, El Salvador, and Brazil showed a strong association (R = 0.73,p= 0.01) between rabies incidence inD.rotundus(rates per million humans: 1.61, 0.94, and 1.09, respectively) and rabies outbreaks in cattle (rates per million cattle: 465.85, 351.01, and 48.22, respectively). A sustained, standardized, and widespread monitoring ofD.rotundusdemography and health could serve to inform an early warning system for the early detection of RABV and other bat-borne pathogens in Latin America. Current data can be used to forecast when, where, and in which intensity RABV outbreaks are more likely to occur in subtropical and tropical Latin America. A decrease in the size of outbreaks could suggest that strategies for epidemic management (e.g., education, early diagnosis, vaccination) have been effective. The increase in the number of outbreaks could suggest that the factors facilitating cross-species transmission could be on the rise.more » « lessFree, publicly-accessible full text available January 13, 2026
-
Abstract BackgroundRabies virus (RABV) is the etiologic agent of rabies, a fatal brain disease in mammals. Rabies circulation has historically involved the dog has the main source of human rabies worldwide. Nevertheless, in Colombia, cats (Felis catus) have become a relevant species in the epidemiology of rabies. AimsTo characterize rabies cases in humans in Colombia in the last three decades in the context of the epidemiology of the aggressor animal. Materials and MethodsWe conducted a retrospective longitudinal epidemiological study of human rabies caused by cats’ aggression, collecting primary and secondary information. Variables considered included the demography of the patient, symptoms, information about the aggressor animal as the source of infection and the viral variant identified. ResultsWe found that the distribution of rabies incidence over the years has been constant in Colombia. Nevertheless, between 2003 and 2012 a peak of cases occurred in rural Colombia where cats were the most frequent aggressor animal reported. Most cats involved in aggression were unvaccinated against rabies. Cat's clinical signs at the time of the report of the human cases included hypersalivation and changes in behaviour. Human patients were mostly children and female and the exposure primarily corresponded to bite and puncture lacerations in hands. The RABV lineage detected in most cases corresponded to variant 3, linked to the common vampire bat (Desmodus rotundus). The geographical presentation of cat borne RABV in humans occurred along the Andes mountains, epidemiologically known as the rabies red Andean corridor. DiscussionBy finding cats as the primary source of rabies spillover transmission in Colombia, this report highlights the importance of revising national rabies control and prevention protocol in countries in the Andes region. ConclusionOur results demonstrate that rabies vaccination for outdoor cats needs to prioritize to reduce the number of rabies‐related human deaths.more » « less
-
Mpox is an emerging, infectious disease that has caused outbreaks in at least 91 countries from May to August 2022. We assessed the link between international air travel patterns and Mpox transmission risk, and the relationship between the translocation of Mpox and human mobility dynamics after travel restrictions due to the COVID-19 pandemic had been lifted. Our three novel observations were that: i) more people traveled internationally after the removal of travel restrictions in the summer of 2022 compared to pre-pandemic levels; ii) countries with a high concentration of global air travel have the most recorded Mpox cases; and iii) Mpox transmission includes a number of previously nonendemic regions. These results suggest that international airports should be a primary location for monitoring the risk of emerging communicable diseases. Findings highlight the need for global collaboration concerning proactive measures emphasizing realtime surveillance.more » « less
-
Bat‐borne pathogens are a threat to global health and in recent history have had major impacts on human morbidity and mortality. Examples include diseases such as rabies, Nipah virus encephalitis, and severe acute respiratory syndrome (SARS). Climate change may exacerbate the emergence of bat‐borne pathogens by affecting the ecology of bats in tropical ecosystems. Here, we report the impacts of climate change on the distributional ecology of the common vampire batDesmodus rotundusacross the last century. Our retrospective analysis revealed a positive relationship between changes in climate and the northern expansion of the distribution ofD. rotundusin North America. Furthermore, we also found a reduction in the standard deviation of temperatures atD. rotunduscapture locations during the last century, expressed as more consistent, less‐seasonal climate in recent years. These results elucidate an association betweenD. rotundusrange expansion and a continental‐level rise in rabies virus spillover transmission fromD. rotundusto cattle in the last 50 years of the 120‐year study period. This correlative study, based on field observations, offers empirical evidence supporting previous statistical and mathematical simulation‐based studies reporting a likely increase of bat‐borne diseases in response to climate change. We conclude that theD. rotundusrabies system exemplifies the consequences of climate change augmentation at the wildlife–livestock–human interface, demonstrating how global change acts upon these complex and interconnected systems to drive increased disease emergence.more » « less
-
Abstract BackgroundNeglected tropical diseases affect the most vulnerable populations and cause chronic and debilitating disorders. Socioeconomic vulnerability is a well-known and important determinant of neglected tropical diseases. For example, poverty and sanitation could influence parasite transmission. Nevertheless, the quantitative impact of socioeconomic conditions on disease transmission risk remains poorly explored. MethodsThis study investigated the role of socioeconomic variables in the predictive capacity of risk models of neglected tropical zoonoses using a decade of epidemiological data (2007–2018) from Brazil. Vector-borne diseases investigated in this study included dengue, malaria, Chagas disease, leishmaniasis, and Brazilian spotted fever, while directly-transmitted zoonotic diseases included schistosomiasis, leptospirosis, and hantaviruses. Environmental and socioeconomic predictors were combined with infectious disease data to build environmental and socioenvironmental sets of ecological niche models and their performances were compared. ResultsSocioeconomic variables were found to be as important as environmental variables in influencing the estimated likelihood of disease transmission across large spatial scales. The combination of socioeconomic and environmental variables improved overall model accuracy (or predictive power) by 10% on average (P < 0.01), reaching a maximum of 18% in the case of dengue fever. Gross domestic product was the most important socioeconomic variable (37% relative variable importance, all individual models exhibitedP < 0.00), showing a decreasing relationship with disease indicating poverty as a major factor for disease transmission. Loss of natural vegetation cover between 2008 and 2018 was the most important environmental variable (42% relative variable importance,P < 0.05) among environmental models, exhibiting a decreasing relationship with disease probability, showing that these diseases are especially prevalent in areas where natural ecosystem destruction is on its initial stages and lower when ecosystem destruction is on more advanced stages. ConclusionsDestruction of natural ecosystems coupled with low income explain macro-scale neglected tropical and zoonotic disease probability in Brazil. Addition of socioeconomic variables improves transmission risk forecasts on tandem with environmental variables. Our results highlight that to efficiently address neglected tropical diseases, public health strategies must target both reduction of poverty and cessation of destruction of natural forests and savannas.more » « less
-
Abstract BackgroundClimate change presents an imminent threat to almost all biological systems across the globe. In recent years there have been a series of studies showing how changes in climate can impact infectious disease transmission. Many of these publications focus on simulations based on in silico data, shadowing empirical research based on field and laboratory data. A synthesis work of empirical climate change and infectious disease research is still lacking. MethodsWe conducted a systemic review of research from 2015 to 2020 period on climate change and infectious diseases to identify major trends and current gaps of research. Literature was sourced from Web of Science and PubMed literary repositories using a key word search, and was reviewed using a delineated inclusion criteria by a team of reviewers. ResultsOur review revealed that both taxonomic and geographic biases are present in climate and infectious disease research, specifically with regard to types of disease transmission and localities studied. Empirical investigations on vector-borne diseases associated with mosquitoes comprised the majority of research on the climate change and infectious disease literature. Furthermore, demographic trends in the institutions and individuals published revealed research bias towards research conducted across temperate, high-income countries. We also identified key trends in funding sources for most resent literature and a discrepancy in the gender identities of publishing authors which may reflect current systemic inequities in the scientific field. ConclusionsFuture research lines on climate change and infectious diseases should considered diseases of direct transmission (non-vector-borne) and more research effort in the tropics. Inclusion of local research in low- and middle-income countries was generally neglected. Research on climate change and infectious disease has failed to be socially inclusive, geographically balanced, and broad in terms of the disease systems studied, limiting our capacities to better understand the actual effects of climate change on health. Graphical abstractmore » « less
-
Ren, Lin-Zhu (Ed.)Most pathogens infect more than one host species, and given infection, the individual-level impact they have varies among host species. Nevertheless, variation in individual-level impacts of infection remains poorly characterised. Using the impactful and host-generalist ectoparasitic mite Sarcoptes scabiei (causing sarcoptic mange), we assessed individual-level variation in pathogen impacts by (1) compiling all documented individual-level impacts of S. scabiei across free-living host species, (2) quantifying and ranking S. scabiei impacts among host species, and (3) evaluating factors associated with S. scabiei impacts. We compiled individual-level impacts of S. scabiei infection from 77 host species, spanning 31 different impacts, and totalling 683 individual-level impact descriptions. The most common impacts were those affecting the skin, alopecia (130 descriptions), and hyperkeratosis coverage (106). From these impacts, a standardised metric was generated for each species (average impact score (AIS) with a 0-1 range), as a proxy of pathogen virulence allowing quantitative comparison of S. scabiei impacts among host species while accounting for the variation in the number and types of impacts assessed. The Japanese raccoon dog (Nyctereutes viverrinus) was found to be the most impacted host (AIS 0.899). We applied species inclusion criteria for ranking and found more well-studied species tended to be those impacted more by S. scabiei (26/27 species AIS < 0.5). AIS had relatively weak relationships with predictor variables (methodological, phylogenetic, and geographic). There was a tendency for Diprotodontia, Artiodactyla, and Carnivora to be the most impacted taxa and for research to be focussed in developed regions of the world. This study is the first quantitative assessment of individual-level pathogen impacts of a multihost parasite. The proposed methodology can be applied to other multihost pathogens of public health, animal welfare, and conservation concern and enables further research to address likely causes of variation in pathogen virulence among host species.more » « less
An official website of the United States government
